Using a Gradient Based Method to Seed an EMO Algorithm
نویسندگان
چکیده
In the field of single-objective optimization, hybrid variants of gradient based methods and evolutionary algorithms have been shown to performance better than the pure evolutionary method. This same idea has been used with Evolutionary Multiobjective Optimization (EMO), obtaining also very promising results. In most of the cases, gradient information is used as part of the mutation operator, in order to move every generated point to the exact Pareto front. This means that gradient information is used along the whole process, and then consumes computational resources also along the whole process. On the other hand, in our approach we will use gradient information only at the beginning of the process, and will show that quality of the results is not decreased while computational cost is. We will use a steepest descent method to generate some efficient points to be used to seed an EMO method. The main goal will be generating some efficient points in the exact front using the less evaluations as possible, and let the EMO method use these points to spread along the whole Pareto front. In our approach, we will solve box-constrained continuous problems, gradients will be approximated using quadratic regressions and the EMO method will be based on Rough Sets theory Hernandez-Diaz et al. (Parallel Problem Solving from Nature (PPSN IX) 9th International Conference, 2006).
منابع مشابه
Particle Swarm Optimization Based Lagrangian Relaxation Method for Unit Commitment
This thesis proposes a two-stage optimization for solving unit commitment. In the first stage, Lagrangian Relaxation (LR) method is used to solve unit commitment using a sub-gradient algorithm for updating Lagrange multipliers. In the second stage, Particle Swarm Optimization (PSO) is applied to update Lagrange multipliers in the Lagrangian Relaxation method (PSOLR). Lagrange multipliers soluti...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملOn the Use of Projected Gradients for Constrained Multiobjective Optimization Problems
Recent works have shown how hybrid variants of gradientbased methods and evolutionary algorithms perform better than a pure evolutionary method both for single-objective and multiobjective optimization. This same idea has been used with Evolutionary Multiobjective Optimization (EMO), obtaining also very promising results. In most cases, gradient information is used as part of the mutation opera...
متن کاملAn accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملUsing Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem
In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008